Welcome To meet the stars

Alternative Energy - Now and the Future

Hosted by Trudy – Ann King State Manager - South Australia

Corporate Sponsor

MEET THE STARS – ADELAIDE

14 October 2009

Today's Speakers

James McGregor, Energy Systems Manager CSIRO

Professor Deo Prasad, Sustainable Energy at UNSW

Blair Healy, Managing Director Cogent

Luke Mclean, Project Manager, Built Environs

David Buetefuer, Project Development Manager Solar Shop Australia Commercial Division

Alternative Energy Now and the Future CSIRO Energy Technology Research and its application in the Sustainable Built Environment

James McGregor Energy Systems Manager CSIRO Division of Energy Technology 14th October 2009

Overview

- Emissions reduction pathway for Australia
- CSIRO's Energy Research
 - Renewable Energy Systems
 - Solar Thermal
 - Solar Cooling
 - Vibration Energy Harvesting
 - Organic Photovoltaics
 - The Intelligent Grid
 - The Virtual Power Station
 - Self Learning Smart Agent Technologies

Emission reduction pathway for Australia

CSIRO

National Solar Energy Centre, Newcastle

Solar Turbine

•Diesel efficien improves

•Thermal storage readily integrates with other heat sources such as diesel exhaust and solar collectors

•Aiming for cost half that of PV's

Exhaust

Polygeneration •Electricity •Heat •Cooling •Desalination •Water pumping

CSIRO's Solar H₂ Technology

"Transitional and modular - bridging the gap to sustainable hydrogen"

CSIRO

CSIRO

Multi-tower Solar Array

Solar Cooling

Desiccant system schematic

Vibration Energy Harvesting

Vibration Harvesting

- Sydney Harbour Bridge vibration = 6.6MW
- Capturing say 10% = 660kW
- Enough power for 220 homes
- Vibration is clean renewable energy source

Organic Photovoltaics

The Virtual Power Station

- Although individually small and unreliable, together DG can:
 - Aggregate to a marketable package
 - Provide firm generation capacity
 - Use spatial awareness to improve forecasts – hence lower storage requirements
- Foster a community ownership of energy & improve reliability
- Get more value from your existing renewables
- Overcome intermittency and become a valued part of the electricity generation mix

Virtual Power Station RENEWABLE AGGREGATED POWER

Home Details View

About Login

VPS Total Output

Change Date

?	October, 2008						
•	<.	Today				>	
wk	Sun	Mon	Tue	Wed	Thu	Fri	Sat
39				1	2	3	4
40	5	6	7	8	9	10	11
41	12	13	14	15	16	17	18
42	19	20	21	22	23	24	25
43	26	27	28	29	30	31	
		1	Selec	t date			

Sustainable Building Energy End Use Intelligent Energy Management Technology

Multi-agent Networks and Intelligent Grids

CSIRO

CSIRO Energy Technology James McGregor Energy Systems Manager

Phone: +61 2 4960 6000 Email: james.mcgregor@csiro.au Web: www.csiro.au/energy

Thank you

Contact Us Phone: 1300 363 400 or +61 3 9545 2176 Email: Enquiries@csiro.au Web: www.csiro.au

Building Integrated Photovoltaics -innovative concepts, policies & tools

Presenter:

Professor Deo Prasad UNSW

CRICOS PROVIDER CODE 00098G

Contents

Green Building Council of Australia Talk Series 2009

- BiPV concepts and Multifunctional façades
- Policy Issues
 - Solar Cities Program
 - Tariff debate
 - Other Rebate/Subsidies
- Tools
 - Australia
 - Canada
- Economic Challenges

CRICOS PROVIDER CODE 000980

UNSW Quadrangle

- 42kWp System
- two arrays comprise 252
 BP5170S modules.
- 9 modules are connected in series, called a 'string'.
- Each two strings are fed into one of 14 - BP Solar Gci2500 Inverters.
- LIVE DATA www.energy.unsw.edu.au

Alice Springs Hotel

•305-kilowatt solar power system atop the roof of the Crowne Plaza Hotel in Alice Springs, Northern Territory

•expected to provide between 40 and 80 percent of the hotel's power requirements, depending on the time of year

CRICOS PROVIDER CODE 000980

Building adapted PV (mainstream)

43.9kWp Bisol p-Si modules, Slovenia, Congress Centre

CRICOS PROVIDER CODE 00098G

PV as part of Building function

Green Building Council of Australia Talk Series 2009

221kWp of blessed Vatican PV

CRICOS PROVIDER CODE 00098G

Building integrated concepts for roof systems

CRICOS PROVIDER CODE 00098G

www.fbe.unsw.edu.au

UNSW **fbe**

Building integrated concepts for façades

13 kWp PV at Vocational School Tyrol, Austria

CRICOS PROVIDER CODE 00098G

UNSW

Building integrated concepts for façades

Green Building Council of Australia Talk Series 2009

Solar Kogarah (AJC) Kogarah SYDNEY 160 kWp

Green Building Council of Australia Talk Series 2009

Australian showcase projects in major cities

Kogarah SYDNEY 160 kWp

QV Markets MELBOURNE 190 kWp

Melbourne University 43 kWp

High Rise BRISBANE 60 kWp

Original 629kWp

Olympic Village SYDNEY

Additional 72kWp

CRICOS PROVIDER CODE 00098G

Shade systems and balustrades

Green Building Council of Australia Talk Series 2009

CRICOS PROVIDER CODE 00098G

System (UPS) Solar Electricity goes to the DC bus of the UPS

Power generated: 140,000 kWh = 6% of total building's demand or Enough to power 30 to 40 houses

Benefits of Integrated Solar Energy and Low Energy Systems

- 20% + return on \$1M invested
- Building 20% more energy efficient
- Reduction of CO2 per annum = 1600 tonnes
- Operational cost saving of \$214,000 / year
- Building qualifies for 5 star SEDA greenhouse rating

UNSW fbe

Façade innovation

Green Building Council of Australia Talk Series 2009

43kWp Melbourne University PV glazing façade, Australia

A-Si solar fascia Lambeth, UK

CRICOS PROVIDER CODE 00098G

Innovative design

Green Building Council of Australia Talk Series 2009

La-Vaguada entrance PV canopy 5.2kWp Madrid

CRICOS PROVIDER CODE 00098G

Synergies with building materials

Green Building Council of Australia Talk Series 2009

1MWp Mont-Cenis-Academy building, Herne Germany

CRICOS PROVIDER CODE 00098G

UNSW

Four Times Square, NY

- 48-storey skyscraper 1st major office building built in NY in 1990s
- BIPV_curtain wall from 37th to 43rd floor on south and east facades replacing spandrel glass.
- BIPV attached to building in same way as standard glass

Global examples – pergola

BIPV application : Pergola Building name The Solar Pergola Location Spain, Barcelona Building type Pergola Completion 2004 PV application Roof integrated PV Type of PV : Monocrystalline silicone Quantity 449 kWp Yield 1250 kWh/kWp

General Description

The 50m height PV area is close to the size of a football pitch (112x50m2) Source : http://www.isofoton.com/espaniol/forum.pdf http://www.earthscan.co.uk/news/article/mps/UAN/226/v/3/sp/332244698595342568278

www.fbe.unsw.edu.au

ODE 00098G

Global examples – High rise

Korea

250kWp PV systems on roof mounted apartment blocks

Insolation Analysis Avg. Daily Direct Radiation Value Regist 20 - 1000 Wh (i) RCOTECT v6

CRICOS PROVIDER CODE 00098G

www.fbe.unsw.edu.au

Day lighting and power generation design control

Green Building Council of Australia Talk Series 2009

BIPV Buildings in Beijing

Tianpu, Beijing Grid-connected system (50kWp)

National Gymnasium Grid-connected system(100kWp) (In progress)

Volkswagen Beijing Service Center(43.2kWp)

•The new solarpowered Bus Stop Indicator in Beijing

www.fbe.unsw.edu.au

UNSW fbe

CRICOS PROVIDER CODE 00098G

Whole building solution - IEQ performance

Photovoltaic power generation

Shielding from intense sunlight

Photovoltaic power generation system making use of Okinawa's intense sunlight Various exterior louvers matching the direction of insolation Various exterior louvers for shading and ventilation

Rooftop:

shelter incorporating solar cells Generation capacity: 145.3 kW Shielding from daytime insolation at high solar attitudes

Southern face:

louvers incorporating solar cells Generation capacity: 50.3 kW Shielding from daytime insolation at low solar attitudes in seasons other than summer as well as at high solar attitudes

First and second floor: office counter work zone

vernacular architecture

Natural ventilation Wide openings allowing natural ventilation in seasons other than summer

(sliding windows/awning windows)

Planned construction site of the Civic Hall

Two light courts Open to natural light and serving as a path for natural ventilation Wide eaves to shield strong sunlight and the space under the eaves, characteristic of Okinawan

Itoman City Government building, Itoman, Okinawa, Japan

Singapore ZEB

- S\$10 million spent to retrofit of an existing facility to incorporate some of the latest energy-efficient inventions
- The building is able to generate as much electricity as it consumes through renewable energy. This works out to a net energy consumption of zero over a typical year
- The solar panels which constitute about 15% of the building cost
- 60 percent of utility bills usually goes into air-conditioning. Sensors will detect the presence of users and will direct fresh air to their breathing zones. Recycled air will be used for ambient cooling

www.fbe.unsw.edu.au

CRICOS PROVIDER CODE 00098G

UNSW

www.fbe.unsw.edu.au

- •SA 44 c/kWh, net export up to 10 kWp, for up to 10MW or until 2028
- •Qld 44 c/kWh net export, for up to 8 MW or until 2028
- •ACT 3.88x tariff (50.05c) gross 20 years for 10 kWp systems,

80% (40.04c) for systems between 10-30 kWp

- •Vic 60 c/kWh net export up to 3.2 kWp, for 15 years, ends 2024
- •Energy Australia 28 c/kWh net export, between 2-8pm
- •Alice Springs Solar City 45 c/kWh gross export 10 years, limit of \$5 per day
- •NSW 60c/kWh net for 20 years up to 10kWp
- •WA and TAS still to decide

CRICOS PROVIDER CODE 000980

EU NEWS......May 2009

- 'European Parliament voted for 'zero energy buildings.... Zero Energy Buildings is a key element in the renewed EU legislation on buildings. During the last plenary session the Parliament adopted new legal requirements for Europe's buildings and their energy performance
- From 2019 all new buildings in the EU will have to produce more renewable energy onsite for example by solar panels than they consume, the Parliament decided by recasting the Energy Performance Buildings Directive of 2002.
- These zero energy buildings will include energy efficient buildings whose overall annual primary energy consumption is equal to or less than the energy production from renewable sources on site. By 2015 national targets will be set to fix minimum percentages of existing buildings to be zero energy' --EU Media

•Net-Zero Energy Commercial Building Initiative :

•U.S. Department of Energy

•Energy Efficiency and Renewable Energy

•Building Technologies Program

•http://www1.eere.energy.gov/buildings/commercial_initiative/zero_energy_projects.html

•The Net-Zero Energy Commercial Building Initiative aims to achieve marketable net-zero energy commercial buildings by 2025. Net-zero energy buildings generate as much energy as they consume through efficient technologies and on-site power

•Zero Energy Building

•Energy and Atmosphere,

• Net Zero Site Energy, Building produces at least as much energy as it uses in a year, when accounted for at the site

• Net Zero Source Energy, Building produces at least as much energy as it uses in a year, when accounted for at the source

• Net Zero Energy Emissions, Building produces at least as much emissionsfree renewable energy as it uses from emission-producing energy sources annually www.fbe.unsw.edu.au

Challenges for Net-zero and Low-energy homes/buildings

- Integration of solar technologies with the architecture and with the envelope.
- Integration and optimization of solar with energy efficiency technologies – must not be separate.
- Thermal storage and passive solar design what are the obstacles; need to integrate in standards – design tool being developed by SBRN.
- Integrated control of energy and solar systems: reduction of peak loads will reduce need for new power plants.

CRICOS PROVIDER CODE 000980

UNSW

ESP-r and its **BiPV** and **PVT** Modelling Ability

- ESP-r is open-source software used by researchers worldwide.
- While requiring some knowledge of energy modelling and thermodynamics, ESP-r is very capable of modeling nearly any advanced feature.
- Uses **finite difference method**, making it more accurate than many other programs for modelling thermal mass &passive solar performance.
- An application-specific/or user-friendly user interface can be created to build and simulate ESP-r models.
 - For example, HOT3000, a popular program for assessing the energy use of houses uses ESP-r as a simulation engine.

CRICOS PROVIDER CODE 00098G

PVSYST and ECOTECT simulation

Green Building Council of Australia Talk Series 2009

Ecotect was used for generating hemispherical sky obscuration model to feed into PVSYST which is part limited by a basic CAD interface

www.fbe.unsw.edu.au

Economic Challenge

- Link to property value
 - Why do we cost PV on buildings as a utility? It is a building material.
 - Value added benefits!
 - 5%-15% property value impact????
- Innovative financing.
- Who has lost money in developing, selling, owning a green building? Check Olympic site.
- Productivity gains and social environment

WWW

Cogent Energy

GBCA Presentation

Sydney, 29th September 09

What is Cogeneration & Advantages?

What is Cogeneration?

- Simultaneous production & use of electricity & heat.
- Sometimes referred to as Tri-generation or CHP (Combined Heat Power).

Advantages

- Proven, low risk & short lead time.
- 50% less CO2 emissions to grid.
- Up to 80% energy efficient.
- Can uplift Green Star & NABERS ratings by 1-2 stars.
- Usually cost-effective.

Building Case Study – 101 Miller St, N Sydney

- Building Owners Mirvac & Eureka
- Installed during building refurbishment in late 2008
- 40k sqm commercial, 10k sqm retail
- Plant services base building and tenants
- Tenants Federal ATG Dept, NSW RTA, AGL
- Base building & tenant energy rates competitive to grid
- Plant Size

cogentenergy

- 2.4 MW electrical
- 1.5 MW absorption chilling
- 70% efficiency
- 5 Star Green Star, 5 Star NABERS energy

Getting it Done!

Do it yourself

- Out sourced design & installation
- Cost of about \$2.0-\$2.5m per 1 MW installation (including absorption chillers)
- Ongoing operations & maintenance at about \$120k pa per 1MW
- Accept risk with future gas prices
- ROI normally determines go or no-go

Outsource to distributed energy company (like Cogent Energy)

- Cogent Energy designs, installs, finances, operates and maintains plant
- 12 year ESA (Energy Supply Agreement)
- Electricity, hot water and chilled water priced competitively to black grid energy
- No gas price risk
- Capital contribution usually required (~ \$250k)

Sharing spaces (3 spaces); potential Green Star Innovation credits;

bicyclo parking and

bicycle parking and facilities (>350 spaces); Green Star Tra-3 points;

electric car charging station (futureproofing only); provided by Better Place; potential Green Star Innovation credits;

- directed parking system for public car park; reduces greenhouse gas emissions from car exhaust; 1-3% reduction in operating costs;

Built Environs

www.builtenvirons.com.au

Built Environs

Built Environs

Built Environs

•Australia's <u>largest</u> commissioned solar power system to date (including non-PV technologies), rated at 1.0MW, or one million Watts.

•Next largest PV array is 400kW sunfarm in Singleton, NSW, commissioned 11 years ago by Country Energy.

Some Project Facts

- Built in alliance partnership with Built Environs
- The total array spans 6 building rooftops
- The project took 14 months from inception, to calls for expression of interest, request for tenders, post tender negotiations, contract execution to practical completion.
- Construction took approx 2 months for 20 installers through Winter and a lot of rain.

Some Project Facts

- The total array spans 6 building rooftops and includes 12,720 solar modules, some fascademounted (vertical)
- 12,612 x Fist Solar FS277 (77.5W) Thin Film frameless modules
- 108 x SunTech STP200-18/Ub (200W) Polycrystalline modules
- 95 x SMA transformerless inverters including SMC-11000TL and SB5000TL units

Some Project Facts

Building/Structure	Number of Solar Generators (each terminated to a distinct Distribution Board)	Rated power (Watts Peak)	No. of Modules	No. of Grid Inverters (89xSMC11000TL + 6xSB5000TL)	Ave size of each Solar Generator (Watts Peak)	Comments
Dairy	1	32,085	414	3	32,085	
Ridley	3	139,965	1806	13	46,655	
Jubilee	12	421,755	5442	39	35,146	
Goyder	5	219,945	2838	20	43,989	
Wayville	2	85,560	1104	8	42,780	
Alpaca	1	78,120	1008	8 (2x SB5000TL)	78,120	
Goyder Façade	1	5670	27	1 (SB5000TL)	5670	Connected to Goyder
Jubilee Facade	1	5670	27	1(SB5000TL)	5670	Connected to Jubilee
Screen	1	11,340	54	2 (SB5000TL)	11,340	Connected to Goyder
Total	27	1,000,110	12720	95	38,466	

On the job

On the job

The finished product

QUESTIONS

Thank You

TO OUR SPEAKERS....

James McGregor, Energy Systems Manager CSIRO

Professor Deo Prasad, Sustainable Energy at UNSW

Blair Healy, Managing Director, Cogent

Luke Mclean, Project Manager Built Environs

David Buetefuer, Project Development Manager, Solar Shop Australia Commercial Division

Save water, Save lives.

Recent major projects

Adelaide Desalination Transfer Pipeline (in joint venture)

Common User Facility (CUF) (in joint venture)

Common User Facility (CUF) (in joint venture)

Pinkenba Malting Plant, Queensland

Lock 3, Overland Corner

Capital Wind Farm, New South Wales

Hallett Hill Wind Farm

Clements Gap Wind Farm

Tails Leach Circuit Upgrade, Olympic Dam

Structural Mechanical Piping – Package 2

Port Thevenard Mineral Sands Transfer Facility

Gepps Cross Home HQ

University of Adelaide Plant Accelerator

Adelaide Showground Solar Project

CMI Toyota Showroom, West Terrace

Adelaide Oval Western Grandstand

Adelaide Oval Western Grandstand

Amazon Waterlily Pavilion

Adelaide Showground – Goyder Pavilion

Ravensthorpe Projects, Western Australia

UniSA City West Campus

UniSA Hawke Building

Outer Harbour Wharf

151 Pirie

UniLodge Metro Adelaide

WorldPark Adelaide

Green Star Accredited Professional

Date: 24 November 2009

Level:

state: South Australia

Greens on The Green

27 November 2009

south Australia

Thank You

Further information on GBCA www.gbca.org.au

